Building and Plant Energy Analysis Technical Report 2

Freetown Elementary School Glen Burnie, MD

Matthew R. Buda

The Pennsylvania State University

Architectural Engineering – Mechanical Option

Advisor: Dr. Treado

Building and Plant Energy Analysis	Matthew Buda	Mechanical
Table of Contents		
Executive Summary		2
Mechanical Overview		2
Design Load Estimation		4
Discussion of Results		7
Energy Analysis		10
Emission Rates		11
Resources		13
Appendix A – ASHRAE Weather Data		14
Appendix B – Regional Grid Emission Factors		15

Appendix C – Trace Templates

16

Executive Summary

The purpose of this report is to do a block load analysis by creating a model. From this different calculations could be done; such as, building energy consumption, operating costs, and emissions from the building.

Creating a model is vital in determining heating and cooling loads, sizing equipment, and determining systems. A model was created in Revit Architecture from the design documents. It was necessary to group some of the rooms together to do a block load analysis. This estimate is not the most accurate because of the grouping of rooms. A more accurate model would be a room by room analysis.

Closely following the design documents of Freetown Elementary School was important when comparing the modeled values to the actual design values. The biggest issue was determining the right air handler in correspondence to the design documents. Another issue that contributed to values not matching up to the design documents was the schedule for different rooms which led to a fluctuation in modeled values.

Calculations were done for building energy consumption was based on the model created in Revit and the loads assigned to the building. Operating costs were calculated based off of values from the local Electric and Gas company rates. The emissions for the building were determined from the North American Electrical Grid and the following were calculated: CO₂, SO_x, NO_x, and PM10 in lbs of total pollution.

Overall, the building resulted in reasonable measurements from the model created in Revit. Discussions of results, assumptions and further explanations can be found throughout this report when determining values.

Mechanical Overview

Freetown Elementary School contains multiple systems to ventilate the occupiable spaces. Six rooftop air handling units serve the music rooms, cafeteria, gymnasium, administration, and media center. Two energy recovery units serve each of the classroom wings. An air source heat pump serves the extended day program area. Fan coil units with outdoor air condition the food prep area and the computer lab. All other areas such as offices, storage areas and electrical rooms are cooled or heated by a ductless split system or a unit heater.

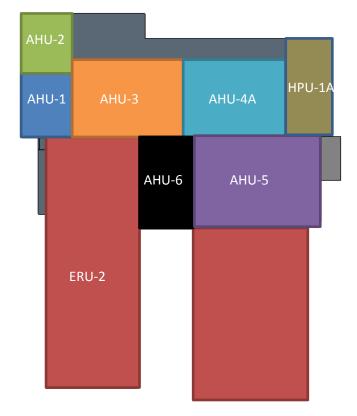


Figure 1 - Air Handling Units Assigned to Each Area

The following tables contain the supply air from each unit serving the school.

System	Supply Air (CFM)
AHU-1	1530
AHU-2	1530
AHU-3	6000

System	Supply Air (CFM)
AHU-4A	7500
AHU-5	3200
AHU-6	4680

System	Supply Air (CFM)
ERU-1	8100
ERU-2	9800
HPU-1A	3600

Table 1 – Supply Air by Design

Design Load Estimation

Trane Trace 700 was used to create a model for Freetown Elementary School. The model was made following the architectural layout. The following table **Building Design Criteria**, as well as other equipment information, was referenced from the design documents for Freetown Elementary School. This information was inputted into the model to simulate the design load calculations.

Building Design Criteria				
Interior	Summer 78°F			
	Winter	70°F		
Exterior	Summer	95°F		
	Winter	0°F		
Interior Load	Lighting 2.0 Watts/SQ. FT.			
	Misc. 150 Watts/Compute			
Ventilation Load	Classrooms 15 CFM OA/Persor			
	Admin. and Media 20 CFM OA/Person			
	Dining 7.5 CFM OA/Person			
	Corridors 0.10 CFM OA/SQ. FT.			
People Density	Based on Architectural Furnishing Plans			
Wall "U" Coefficient	0.083 BTU/(HR)(SQ.FT.)(DEG. F)			
Roof "U" Coefficient	0.033 BTU/(HR)(SQ.FT.)(DEG. F)			
Glass Transmission "U"	0.49 BTU/(HR)(SQ.FT.)(DEG. F)			
Glass Solar Factor	().55		

Table 2 – Building Design Criteria

Ventilation Rates

Ventilation rates can be found in the table above for the classrooms, administration, dining areas, and corridors. The rooms not classified into these spaces will be modeled with the ASHRAE recommended ventilation rate.

Lighting and Equipment Electrical Loads

Lighting and miscellaneous loads are included in the table above and were inputted into the Trace model.

Design Occupancy

The amount of occupants per room was calculated based off of the architectural plans. These values were included in the energy model and if a value was not determined from the design documents, the ASHRAE values were used under the Standard 62.1.

Design Indoor and Outdoor Air Conditions

Although the indoor and outdoor air conditions are stated in the design documents, the guidelines for this report specifies to use the ASHRAE Handbook of Fundamentals weather data values. The values that are used include the 0.4% and 99.6% values. Data from Baltimore, MD was used because it is the closest reported city to Glen Burnie, MD where Freetown Elementary School is located. Glen Burnie is approximately 12 miles south of Baltimore. This reference can be found in Appendix A.

ASHRAE Values	Summer Design Cooling 0.4%	Winter Design Heating 99.6%
OA Dry Bulb (°F)	93.6	12.3
OA Wet Bulb (°F)	75.0	~

Table 3 – ASHRAE Weather Design Values

The table above includes the outdoor air, dry and wet bulb temperatures at summer and winter conditions. The indoor air dry bulb temperature will be based off of the design criteria located in Table - 2.

Load Sources and Schedules

The main load sources in the building are electrical and lighting loads, solar loads, occupants, mechanical equipment and electrical equipment.

Schedules for all of the rooms are computed using the "Vent – Elementary School". A summary of the schedule is located in the tables below.

*Note: Heating design from 12am through 12am is 100%.

Summer		
Time	%	
12am-7am	0	
7am-8am	30	
8am-3pm	80	
3pm-5pm	30	
5pm-12am	0	

School Year - Weekday		
Time	%	
12am-7am	0	
7am-8am	50	
8am-5pm	100	
5pm-12am	0	

Weekend		
Time	%	
12am-12am	0	

 Table 4 – Schedule for Building from Trace

Additional Assumptions

It is assumed that for the infiltration rates, the building type is average construction and is pressurized. The thermostat is set at 78°F for cooling and 70°F for heating. The construction materials are based off of the architectural sections for wall assemblies. The U-factor and the shading coefficient for the glass was inputted based off of the design criteria from the design documents.

Occupants for the cafeteria had to be adjusted from what ASHRAE recommended of 10 sq ft /person. Figuring on 24 students per classroom with 32 classrooms, leads to 768 total students. Assuming there is three lunch periods, breaks the number down to 256 students at one time when it is fully occupied. The overall schedule for the building is used for this which is detailed in Table - 4. Since lunch only occurs for about 2 hours during the day when the 256 students will be in there, the tonnage will be oversized when the space is empty.

Occupants for the gymnasium were determined on two classroom sessions at once. Therefore a class size of 48 students throughout the day will occupy the gymnasium. Including the gym teacher and a helper, the estimated occupants is 50 people occupying the gymnasium.

Air Handler Assumptions

Energy Recovery Units are modeled as constant volume with mixing terminal air blender. This is different from the design documents in that the energy recovery units do not have a reheat after the room air mixes with the supply air according to the schematic.

Model Created in Revit Architecture 2011

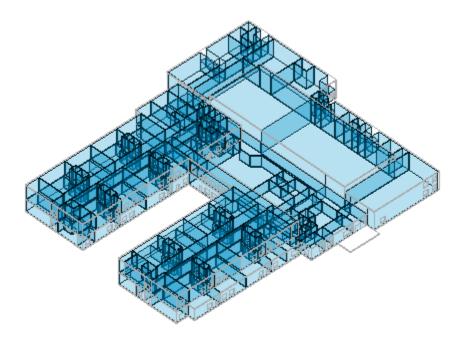


Figure 2 – Freetown Elementary School Model

Discussion of Results

In creating the model, multiple rooms were combined to give an estimate that is reasonable in creating a block load analysis. With combining rooms for block loads, airflow calculations and heating/cooling capacity are not as closely related to the design documents. The following table displays how the model compared to the actual design. A breakdown of each system is further explained in detail as to how the model differs from the actual design. For a more accurate analysis, a room by room analysis should be calculated.

Modeled vs. Designed								
	Cooling (tons) Heating (N		Heating (MBH)			ipply Air ⁻ M)		on Supply CFM)
	Modeled	Designed	Modeled	Designed	Modeled	Designed	Modeled	Designed
AHU-1	5.6	6.5	55	78	1660	1530	780	600
AHU-2	4.6	5.2	43	61	1400	1530	440	375
AHU-3	30.6	23	214	280	4640	6000	2120	2000
AHU-4A	16.9	29	151	355	4200	7500	1000	2500
AHU-5	8.1	10.3	7	120	2630	3200	350	700
AHU-6	14.7	14.6	69	183	3050	4680	1590	1080
ERU-1	77.7	33.1	252	613	21320	8100	6990	8100
ERU-2	83.7	42.2	235	741	22100	9800	8000	9800
HPU-1	7.3	9.6	72	119	2273	3600	420	800

Table 5 – Modeled VS. Designed Measurements from Trace

AHU-1 and AHU-2 were modeled reasonably close to the design conditions. These two air handlers only serve one or two rooms with furniture in it so it was accurate in terms of occupants.

AHU-3 and AHU-4A were difficult to model because of the spaces they serve. These air handlers serve the cafeteria and the gymnasium. In the design documents the occupants per room were not discussed therefore an estimation was made. Originally, the ASHRAE recommended number was used for square foot per person. This called for an approximate 500 people in the cafeteria at once. This number had to be adjusted since there are approximately 768 students in the school (32 classrooms of 24 students each). Assuming three lunch periods, a value for the cafeteria was numbered at 256 students. The values are not near design conditions because the schedule is also assumed constant for all rooms. This causes the air handler to work harder when no one is occupying the cafeteria when lunch is not in session or when the gymnasium is not being used. Another issue arises when the partition located between the gymnasium and cafeteria is removed for assemblies or gatherings. This was not taken into effect when modeling these two air handlers.

AHU-5 was modeled as a variable volume reheat. In the design documents, there is also a bypass damper from the return air stream to bypass the air handling unit to serve the space. This was not available in the systems for the model in Trace. Therefore the heating energy is not a reasonable estimate.

AHU-6 was modeled as a constant volume – non-mixing computer room unit because it serves the media center. In the model, there is a reheat before the room but there is no reheat after it leaves the fan in the design documents so this number is not comparable.

ERU-1 and ERU-2 were difficult to model. They were modeled as a constant volume with mixing, terminal air blender. This does not take into consideration that they are energy recovery units and the model schematic also differs from the design schematic. The model schematic has a reheat and an extra fan before the supply air and room air enter the room. The design documents do not show these two features. The design documents simply have the room air mixing with the supply air before entering the room again. In conclusion, the results calculated were not comparable to the design conditions.

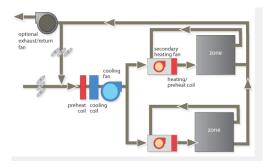


Figure 3- Schematic from Trace of ERU

HPU-1 serving the Extended Daycare Program did not indicate ventilation rates or the amount of occupants that were in the space so the numbers were not comparable.

Overall, the results from the model were a reasonable estimate from the assumptions made and the altering of the air handler units. A more accurate model would be made with a better understanding of manipulating the Trace systems, also with more accurate values for places such as the cafeteria and gymnasium. Altering the schedules for each system would benefit in the accuracy of the calculations depending on the use.

Possible Errors

Since the person modeling the information from the design documents is not fully familiar with the program, possible errors or wrong assumptions may have been made. Any of these errors made could have resulted in other errors that were in connection to the first error. Possible errors within the program may have also been resulted when doing the load calculations.

Energy Analysis

An energy analysis was not performed on this building. This is not a LEED certified school so the analysis would not be most important.

Utility Assumptions

Actual utility bills are not available won't be compared to the actual energy use. Baltimore Gas and Electric Company was used for determining rates for both gas and electric. It is assumed that Freetown Elementary School is using this because it is so close to Baltimore, MD. Since the demand load for the building is 1,056.9kW, the 2,000kWh or more in any month option was used for the following rates. This is listed under commercial, industrial, and lighting rates. For gas distribution, the general category was assumed.

Electricity	Customer Charge: \$17.50 per month Energy Charge: \$0.10 per kilowatt hour per month
Gas	Customer Charge: \$35.00 per month Distribution Charge: 19.75 cents per therm for first 10,000 therms 9.48 cents per therm over 10,000 therms

Energy Consumption: Freetown Elementary School consumes 2,112,000 kWh of electricity and 119,000 kBtu of gas annually based on the model. Below is a breakdown of energy consumption for each category. The main energy consumption is by the air cooled chiller and the boiler (when converted to kWh, it is comparable to the air cooled chiller). Lighting is also a large portion of the energy consumption at peak load.

Equipment Energy Consumption				
Boiler	Gas (therms)	1190		
	Peak (therms/hr)	4.9		
Air Cooled Chiller	Electric (kWH)	482800		
	Peak (kW)	213.4		
Lighting	Electric (kWH)	133100		
	Peak (kW)	152		
Miscellaneous	Electric (kWH)	233900		
	Peak (kW)	26.7		

Table 6 – Equipment Energy Consumption Calculated in Trace

Total Energy Cost: The total annual energy cost for Freetown Elementary School was modeled to be \$212,000 or a cost per area of \$2.79/ft².

System Emission Rates

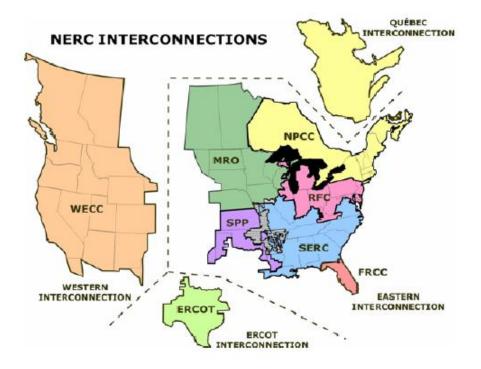


Figure 4 – Map of North American Interconnection Grid

According to the National Renewable Energy Laboratory, Glen Burnie, MD is located in the RFC section on the electricity grid for the United States.

	Emissio	ns from Electricity			
	Total Electricity Usage (kWh)	Electricity Emission Factor (lb pollutant/kWh)	Total Pollution (lbs)		
CO ₂		1.64	3,463,680		
SO _x		8.57E-03	18,100		
No _x	2,112,000	3.00E-03	6 <i>,</i> 336		
PM					
10		9.26E-05	196		

Table 7 – Total Emissions from the building

	Emission	s from Natural Gas				
	Total Natural Gas Usage (ft ³)	Emission Easter (Ib				
CO ₂		1.22E+02	14,083.3			
SO _x		6.32E-04	0.1			
No _x	115,437	1.11E-01	12.8			
PM						
10		8.40E-03	1.0			

Values for electricity and natural gas emission factors were referenced from the National Renewable Energy Laboratory in order to calculate the total pollution from Freetown Elementary School. The PM factors do not include particulate formation in the atmosphere from chemical reactions of sunlight with emissions of NO_x, SO_x, and other gases. Composition of the fuel, the equipment, and the maintenance of the equipment determine the emissions from combustion on the boilers located in the school.

Resources

- ASHRAE (2005). *Handbook Fundamentals*. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
- James Posey Associates. 2008. <u>MEP Construction Documents</u>. James Posey Associates, Baltimore, MD. 2008.
- "Rates and Tariffs." *Baltimore Gas & Electric Company*. Web. 26 Oct. 2010. http://www.bge.com/portal/site/bge/menuitem.1dac74e4b8ebc087047eb47101617 6a0/>.
- Rubeling Associates, Inc. 2008. <u>Architectural Construction Documents</u>. Rubeling Associates, Inc., Towson, MD. 2008.
- Deru and Torcellini (June 2007). Source Energy and Emission Factors for Energy Use in Buildings. Golden, Colorado: National Renewable Energy Laboratory.

Appendix A – ASHRAE Weather Data

2005 ASHRAE Handbook - Fundamentals (IP)

© 2005 ASHRAE, Inc.

					Desig	n conditi	ons for	BALTIM	ore, M	D, USA					
tation Info	rmation									T		٦			
tation nam	e			WMO#	Lat	Long	Elev	StdP	Hours +/- UTC	Time zone code	Period				
9				1b	10	1d	1e	1f	1g	1h	1i	1			
ALTIMO				724060	39.17N	76.67W	154	14.614	-5.00	NAE	7201				
nnual Hea	ting and Hu	umidificatio	on Design C	2002/01/2012/20	difference P	P/MCDB and	100			Coldest mon	LUNCA.CD	0	MOMO	/PCWD	1
Coldest month	Heati 99.6%	ng DB 99%	DP	99.6% HR	MCDB	DP	99% HR	MCDB	0 WS	MCDB	WS	I%	to 99.0 MCWS	6% DB	
2	3a	3b	4a	4b	40	4d	4e	4f	5a	50	5c	50	6a	65	1
1	12.3	16.7	-3.5	4.6	16.4	1.1	5.8	20.8	27.3	33.0	24.9	30.9	8.8	270	
nnual Coo		midification	n, and Entha	Ipy Design						5	UDMODE			News	VPCWD
Hottest month	Hottest month		4%	Cooling E	% MCWB	20	76	0.4			WB/MCDE	20	6		1% DB
7	DB range 8	DB 9a	9b	90 90	9d	DB 9e	MCWB 9f	WB 10a	MCDB 10b	10c	MCDB 10d	WB 10e	MCDB 10f	11a	PCWE 11b
7	18.7	93.6	75.0	90.9	74.3	88.2	73.1	78.1	88.3	76.9	86.4	75.6	84.3	10.5	280
	0.4%		Dehumidifi	cation DP/MC 1%	CDB and HR		2%		0	.4%	Enthalp	y/MCDB 1%	2	%	}
DP 12a	HR 12b	MCDB 12c	DP 12d	HR 12e	MCDB 12f	DP 12g	HR 12h	MCDB 12i	Enth 13a	MCDB 13b	Enth 13c	MCDB 13d	Enth 13e	MCDB 131	1
75.4	133.6	82.4	74.1	128.0	81.2	72.9	122.9	80.1	33.8	88.7	32.5	86.4	31.4	84.6	
xtreme Ar	inual Desig	n Condition	ns												
Extr	eme Annual	WS	Extreme	Me		Annual DB Standard	deviation	n=5 \	/ears	n-Year R		Values of Ex		n=50	vears
1% 14a	2.5% 14h	5% 14c	WB 15	Max 16a	Min 16b	Max 16c	Min 16d	Max 17a	Min 17b	Max 17c	Min 17d	Max 17e	Min 171	Max 17g	Min 17h
23.0	19.5	17.7	84.6	97.8	4.8	3.0	6.3	100.0	0.3	101.7	-3.4	103.4	-7.0	105.6	-11.5
	sign Dry Bu		an Coincide	nt Wet Bulb			10104000	10120-0020-0	022.022	101-103	10000000		153504	049.0238	
%	Ja DB	an MCWB	DB F	eb MCWB	DB	1ar MCWB	DB	pr MCWB	DB	May MCWB	DB	lun MCWB			
70	18a	180	18c	18d	18e	18f	18g	18h	18i	18j	18k	18/			
0.4% 1%	64.9 61.7	58.7 56.1	70.2 65.8	56.1 54.6	80.1 75.6	62.7 60.0	86.7 83.0	66.3 64.9	90.5 88.4	71.2 69.8	94.4 92.7	74.5 74.2			
2%	58.2	53.1	62.1	53.4	71.1	58.0	79.2	62.9	86.2	68.9	91.0	73.7			
%	J DB	ul MCWB	DB A	ug MCWB	DB	ep MCWB	DB	MCWB	DB	MCWB	DB D	Dec MCWB			
10	18m	18n	180	18p	18q	18r	18s	181	18u	18v	18w	18x			
0.4% 1%	97.9 96.0	76.6 76.2	96.1 94.1	76.1 75.5	92.7 90.2	73.5 73.2	82.9 80.2	68.3 67.2	75.3 72.5	63.9 61.6	68.3 65.0	60.0 56.8			
2%	94.3	75.6	92.2	75.2	87.8	72.9	77.8	66.7	69.8	60.0	62.0	55.6			
lonthly De	sign Wet B	ulb and Me	an Coincide	nt Dry Bulb	Temperatu	res									
%	Ja WB	an MCDB	F WB	eb MCDB	WB	1ar MCDB	A WB	MCDB	WB	May MCDB	WB	lun MCDB			
	19a	19b	19c	19d	19e	191	19g	19h	19i	19)	19k	191			
0.4% 1%	60.2 57.5	63.5 61.3	60.0 57.4	66.0 62.7	64.8 62.4	77.7 72.4	68.7 67.3	80.2 78.4	74.7 73.3	85.5 83.9	78.5 77.3	88.2 87.1			
2%	54.4	57.8	54.4	60.0	60.0	68.6	65.6	75.9	72.0	81.7	76.3	85.8			
%	J WB	MCDB	WB	MCDB	WB	ep MCDB	WB	MCDB	WB	MCDB	WB	MCDB			
0.484	19m	19n	190 70 5	19p	19q 77 9	19r	19s 71 5	19(77.9	19u 66 5	19v 71 9	19w	19x			
0.4% 1%	80.3 79.3	91.2 90.5	79.5 78.4	89.0 88.1	77.3 76.3	86.2 84.7	71.5 70.5	77.8 76.4	66.5 64.7	71.3 68.9	61.7 59.5	66.5 63.1			
2%	78.4	89.2	77.7	87.5	75.3	83.2	69.1	74.7	63.4	67.3	56.9	60.7			
Jan	an Daily Te	emperature Mar	Range Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	ï			
20a	20b	200	20d	20e	20f	20g	20h	20/	20j	20k	20/	-			
15.3	16.7	18.2	20.1	20.0	19.5	18.7	18.2	18.3	20.0	18.2	15.8				
MO#	World Mete	orological O	Irganization r	number	Lat	Latitude, *		tion along the		Long	Longitude,	٠			
в	Elevation, ft Dry bulb ter	nperature, *	F		StdP DP Foth	Dew point te	emperature,	ation elevatio °F	on, psi	WB HR		emperature, *f		ells of dear	
	Wind speed	mnn			Enth	Enthalpy, Bt				HR			moisture per	r lb of dry air	53

Appendix B – Regional Grid Emission Factors

Pollutant (lb)	National	Eastern	Western	ERCOT	Alaska	Hawaii
CO _{2e}	1.67E+00	1.74E+00	1.31E+00	1.84E+00	1.71E+00	1.91E+00
CO ₂	1.57E+00	1.64E+00	1.22E+00	1.71E+00	1.55E+00	1.83E+00
CH4	3.71E-03	3.59E-03	3.51E-03	5.30E-03	6.28E-03	2.96E-03
N ₂ O	3.73E-05	3.87E-05	2.97E-05	4.02E-05	3.05E-05	2.00E-05
NO _X	2.76E-03	3.00E-03	1.95E-03	2.20E-03	1.95E-03	4.32E-03
SOx	8.36E-03	8.57E-03	6.82E-03	9.70E-03	1.12E-02	8.36E-03
CO	8.05E-04	8.54E-04	5.46E-04	9.07E-04	2.05E-03	7.43E-03
TNMOC	7.13E-05	7.26E-05	6.45E-05	7.44E-05	8.40E-05	1.15E-04
Lead	1.31E-07	1.39E-07	8.95E-08	1.42E-07	6.30E-08	1.32E-07
Mercury	3.05E-08	3.36E-08	1.86E-08	2.79E-08	3.80E-08	1.72E-07
PM10	9.16E-05	9.26E-05	6.99E-05	1.30E-04	1.09E-04	1.79E-04
Solid Waste	1.90E-01	2.05E-01	1.39E-01	1.66E-01	7.89E-02	7.44E-02

Table 3 Total Emission Factors for Delivered Electricity (lb of pollutant per kWh of electricity)

Table 8 Emission Factors for On-Site Combustion in a Commercial Boiler	r
(Ib of pollutant per unit of fuel)	

	Commercial Boiler									
Pollutant (lb)	Bituminous Coal *	Lignite Coal **	Natural Gas	Residual Fuel Oil	Distillate Fuel Oil	LPG				
	1000 lb	1000 lb	1000 ft ³ ***	1000 gal	1000 gal	1000 gal				
CO _{2e}	2.74E+03	2.30E+03	1.23E+02	2.56E+04	2.28E+04	1.35E+04				
CO2	2.63E+03	2.30E+03	1.22E+02	2.55E+04	2.28E+04	1.32E+04				
CH4	1.15E-01	2.00E-02	2.50E-03	2.31E-01	2.32E-01	2.17E-01				
N ₂ O	3.68E-01	NDŤ	2.50E-03	1.18E-01	1.19E-01	9.77E-01				
NOx	5.75E+00	5.97E+00	1.11E-01	6.41E+00	2.15E+01	1.57E+01				
SOx	1.66E+00	1.29E+01	6.32E-04	4.00E+01	3.41E+01	0.00E+00				
co	2.89E+00	4.05E-03	9.33E-02	5.34E+00	5.41E+00	2.17E+00				
VOC	NDŤ	NDŤ	6.13E-03	3.63E-01	2.17E-01	3.80E-01				
Lead	1.79E-03	6.86E-02	5.00E-07	1.51E-06	NDT	NDT				
Mercury	6.54E-04	6.54E-04	2.60E-07	1.13E-07	NDT	NDT				
PM10	2.00E+00	ND [†]	8.40E-03	4.64E+00	1.88E+00	4.89E-01				

* from the U.S. LCI data module: Bituminous Coal Combustion in an Industrial Boiler (NREL 2005)

** from the U.S. LCI data module: Lignite Coal Combustion in an Industrial Boiler (NREL 2005)

*** Gas volume at 60°F and 14.70 psia.

[†] no data available

Appendix C – Trace Templates

Internal Load	Template	es - Project				x
Alternative	Altern	ative 1	•			Apply
Description	Cafete	eria	-			Close
People						
Туре	Cafeteria	3			-	New
Density	256	People 💌	Schedule Cooling Or	nly (Design)	-	Сору
Sensible	275	Btu/h	Latent 275 B	ltu/h		Delete
Workstations	£					Add Global
Density	0	workstations 👻				
Lighting	,	,				
Туре	Recesse	d fluorescent, not vented, 8	0% load to space		-	
Heat gain		W/sq.ft 💌	Schedule Cooling Or	nly (Design)	-	
Miscellaneou	ua la a da		,			
Type	None				_	
				1.05	<u> </u>	
Energy Energy		W/sq ft 💌	Schedule Cooling Or	niy (Design)	-	
meter	None	•				
<u>I</u> nternal	Load	Airflow	<u>T</u> hermostat	<u>C</u> onstruction]	<u>R</u> oom

Internal Load	Templates - Project					×
Alternative Description	Alternative 1 Classroom		•			Apply Close
People						
Туре	Classroom				-	New
Density	28 People	•	Schedule Cooling Or	nly (Design)	•	Сору
Sensible	200 Btu/h		Latent 150 B	tu/h		Delete
Workstations	·					Add Global
Density	4 workstations	•				
Lighting						
Туре	Recessed fluorescent, not	vented, 80)% load to space		-	
Heat gain	2 W/sq ft	•	Schedule Cooling Or	nly (Design)	-	
Miscellaneou	s loads					
Туре	Std School Equipment				-	
Energy	150 Watts/workstatio	on 🔻	Schedule Cooling Or	nly (Design)	•	
Energy meter	Electricity	•				
<u>Internal</u>	Load <u>A</u> irflow		<u>T</u> hermostat	<u>Construction</u>		<u>R</u> oom

Internal Load	Template	s - Project					×
Alternative	Alterna		•				Apply
Description	Media	Center	•				Close
People							
Туре	Library					-	New
Density	72	People 💌	Schedule	Cooling On	ly (Design)	•	Сору
Sensible	245	Btu/h	Latent	155 Br	tu/h		Delete
Workstations							Add Global
Density	13	workstations 🔹					
Lighting							
Туре	Recessed	d fluorescent, not vented, 8	0% load to sp	ace		•	
Heat gain	2	W/sq.ft 💽	Schedule	Cooling On	ly (Design)	-	
Miscellaneou	ıs loads						
Туре	Std Scho	ol Equipment				•	
Energy	150	Watts/workstation 💌	Schedule	Cooling On	ly (Design)	•	
Energy meter	Electricity	•					
<u>I</u> nternal	Load	Airflow	<u>I</u> hern	iostat	<u>C</u> onstruction		Boom

Internal Load	Template:	s - Project						×
Alternative Description	Alterna Office	ative 1		•				Apply Close
People								
Туре	General C)ffice Space					•	New
Density	1	People	•	Schedule	Cooling Onl	y (Design)	-	Сору
Sensible	250	Btu/h		Latent	200 Bb	u/h		Delete
Workstation	s							Add Global
Density	1	workstations	-					
Lighting								
Туре	Recessed	d fluorescent, not ver	ited, 80	% load to sp	ace		•	
Heat gain	2	W/sq ft	-	Schedule	Cooling Onl	y (Design)	-	
Miscellaneou	us loads							
Туре	Std Office	e Equipment					-	
Energy	150	Watts/workstation	-	Schedule	Cooling Onl	y (Design)	-	
Energy meter	Electricity	I	•					
<u>I</u> nternal	Load	Airflow		<u>T</u> herm	ostat	<u>C</u> onstruction		<u>R</u> oom

Airflow Templat	es - Project		1.00		×	
Alternative	Alternative 1	•			Apply	
Description	Cafeteria	•			Close	
Main supply		Auxiliary supply				
Cooling	To be calculated 💌	Cooling	To be calculated 💌]	New	
Heating	To be calculated 💌	Heating	To be calculated 💌]	Сору	
Ventilation		Std 62.1-2004/2007			Delete	
Apply ASHF	AE Std62.1-2004/2007 No 💌	Clg Ez Ceiling cl	g supply, ceiling retu 👻	%	Add Global	
Туре	Cafeteria 💌	Htg Ez Ceiling ht	Htg Ez Ceiling htg supply, floor return 👻 🕺			
Cooling	7.5 cfm/person 💌	Er Default b	ased on system type 💌	%		
Heating	7.5 cfm/person 💌	DCV Min OA Inta	ke None	$\overline{\mathbf{v}}$		
Schedule	Vent - Elementary School 📃	Room exhaust		_		
Infiltration		Rate 0	air changes/hr 🛛 💌]		
Туре	Pressurized, Average Const. 💌	Schedule Vent -	Elementary School 📃 💌]		
Cooling	0.3 air changes/hr 💌	VAV minimum				
Heating	0.3 air changes/hr 💌	Rate 0	🛛 🖉 Clg Airflow 💽]		
Schedule	Available (100%)	Schedule Vent -	Elementary School 📃 💌]		
		Type Defau	lt 💌]		
Internal Lo	ad <u>A</u> irflo w	<u>T</u> hermostat	<u>C</u> onstruction		<u>R</u> oom	

Airflow Templat	es - Projec	t							×
Alternative	Alternative	e 1	-	·]					Apply
Description	Classroom	1	-	·					Close
Main supply			Aux	iliary supply					
Cooling		To be calculated 🖉 💌]	Cooling		To be calculated	•		New
Heating		To be calculated 🖉 💌		Heating		To be calculated	•		Сору
Ventilation	ì			52.1-2004/	2007			_	Delete
Apply ASHF	RAE Std62.1	-2004/2007 No 💌		Clg Ez Ce	iling clg	supply, ceiling retu	-	%	Add Global
Туре	Classroom 💌			Htg Ez Ceiling htg supply, floor return 💌 🕺				%	
Cooling	15 0	cfm/person 🖉 👻		Er De	fault ba	sed on system type	-	%	
Heating	15 0	cfm/person 🖉 👻		DCV Min O	A Intaki	e None		-	
Schedule	Vent - Ele	mentary School 📃 💌	Roo	om exhaust					
Infiltration			I	Rate	0	air changes/hr	•		
Туре	Pressurize	ed, Average Const. 💌] :	Schedule	Vent - E	lementary School	•		
Cooling	0.3	air changes/hr 📃 💌		/ minimum					
Heating	0.3	air changes/hr 📃 💌]	Rate	0	% Clg Airflow	•		
Schedule	Available ((100%) 💌]	Schedule	Vent - E	lementary School	-		
				Туре	Default		-		
			T						
Internal Lo	ad	<u>A</u> irflow		hermostat		<u>C</u> onstruction			<u>R</u> oom

Airflow Templat	es - Proj	ject				×
Alternative	Alterna	tive 1	•			Apply
Description	Gymna	sium	-			Close
Main supply			Auxiliary supply			
Cooling		To be calculated 💌	Cooling	To be calculated 🔻]	New
Heating		To be calculated 💌	Heating	To be calculated 💌]	Сору
Ventilation			Std 62.1-2004/2007.			Delete
Apply ASHF	RAE Std6	2.1-2004/2007 No 💌	Clg Ez Ceiling clg supply, ceiling retu 💌 🖉 炎			Add Global
Туре	None	-	Htg Ez Ceiling htg supply, floor return 🔽 🖉 🕺 📈 🖉			
Cooling	20	cfm/person 👻	Er 🛛 Default based on system type 🔽 🕺 🕺			
Heating	20	cfm/person 👻	DCV Min OA Int	ake None	-	
Schedule	Vent - I	Elementary School 🛛 💌	Room exhaust			
Infiltration			Rate 0	air changes/hr 💌]	
Туре	Pressurized, Average Const. 💌		Schedule Vent	- Elementary School 📃 💌]	
Cooling	0.3	air changes/hr 🔹	VAV minimum			
Heating	0.3	air changes/hr 🛛 💌	Rate 0	% Clg Airflow 💌]	
Schedule	e Available (100%) 🔹		Schedule Vent - Elementary School 🗾 💌			
			Type Defa	ult 💌]	
Internal Lo	ad	<u>A</u> irflo w	<u>I</u> hermostat	<u>C</u> onstruction		<u>R</u> oom

Airflow Templates - Project								
Alternative Description	Alterna	ative 1	-		Apply			
Main supply			Auxiliary supply					
Cooling Heating		To be calculated To be calculated	Cooling Heating	To be calculated To be calculated	New Copy			
Ventilation Apply ASHRAE Std62.1-2004/2007 No 💌			Std 62.1-2004/2007 Clg Ez Ceiling cl g	Delete				
Туре	General Office Space		Htg Ez Ceiling htg supply, floor return 💌 🕺		Add Global			
Cooling Heating	20	cfm/person	Er Default ba		*			
Schedule	Vent -	Elementary School 💽	Room exhaust	Room exhaust				
Infiltration Type	Pressu	rized, Average Const. 💌	Rate 0 Schedule Vent -	air changes/hr 💽 Elementary School 💌				
Cooling Heating	0.3	air changes/hr 💽	VAV minimum Rate 0	% Cla Airflow				
Schedule Available (100%)			Schedule Vent - Elementary School					
		-	Type Defaul	t 🔽				
Internal Lo	ad	Airflow	<u>T</u> hermostat	<u>C</u> onstruction	<u>R</u> oom			